您好、欢迎来到现金彩票网!
当前位置:皮皮彩票app下载 > 共同介质段 >

介值定理证明两种方法

发布时间:2019-06-06 23:32 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  介值定理:设函数y=f(x)在闭区间[a,b]上连续,且在这区间端点处取值不同时,即:f(a)=A,f(b)=B,且A≠B。那么,不论C是A与B之间的怎样一个数,在闭区间[a,b]内至少有一点ξ,使得f(ξ)=C。根据连续函数的定义证明即可。反证法:如果不存在a≤ξ≤b,使得f(ξ)=C,则函数不连续。

http://divasrun.com/gongtongjiezhiduan/399.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有